Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

zeroscons(0, n__zeros)
and(tt, X) → activate(X)
length(nil) → 0
length(cons(N, L)) → s(length(activate(L)))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(X) → X

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

zeroscons(0, n__zeros)
and(tt, X) → activate(X)
length(nil) → 0
length(cons(N, L)) → s(length(activate(L)))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(X) → X

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(N, L)) → LENGTH(activate(L))
LENGTH(cons(N, L)) → ACTIVATE(L)
ACTIVATE(n__take(X1, X2)) → TAKE(X1, X2)
AND(tt, X) → ACTIVATE(X)
ACTIVATE(n__zeros) → ZEROS
TAKE(s(M), cons(N, IL)) → ACTIVATE(IL)

The TRS R consists of the following rules:

zeroscons(0, n__zeros)
and(tt, X) → activate(X)
length(nil) → 0
length(cons(N, L)) → s(length(activate(L)))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(N, L)) → LENGTH(activate(L))
LENGTH(cons(N, L)) → ACTIVATE(L)
ACTIVATE(n__take(X1, X2)) → TAKE(X1, X2)
AND(tt, X) → ACTIVATE(X)
ACTIVATE(n__zeros) → ZEROS
TAKE(s(M), cons(N, IL)) → ACTIVATE(IL)

The TRS R consists of the following rules:

zeroscons(0, n__zeros)
and(tt, X) → activate(X)
length(nil) → 0
length(cons(N, L)) → s(length(activate(L)))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 3 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__take(X1, X2)) → TAKE(X1, X2)
TAKE(s(M), cons(N, IL)) → ACTIVATE(IL)

The TRS R consists of the following rules:

zeroscons(0, n__zeros)
and(tt, X) → activate(X)
length(nil) → 0
length(cons(N, L)) → s(length(activate(L)))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__take(X1, X2)) → TAKE(X1, X2)
TAKE(s(M), cons(N, IL)) → ACTIVATE(IL)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(TAKE(x1, x2)) = 1/2 + (13/4)x_1 + x_2   
POL(cons(x1, x2)) = (4)x_2   
POL(n__take(x1, x2)) = 1/4 + (13/4)x_1 + (9/4)x_2   
POL(s(x1)) = 2   
POL(ACTIVATE(x1)) = 4 + (7/4)x_1   
The value of delta used in the strict ordering is 3.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

zeroscons(0, n__zeros)
and(tt, X) → activate(X)
length(nil) → 0
length(cons(N, L)) → s(length(activate(L)))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(N, L)) → LENGTH(activate(L))

The TRS R consists of the following rules:

zeroscons(0, n__zeros)
and(tt, X) → activate(X)
length(nil) → 0
length(cons(N, L)) → s(length(activate(L)))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.